Keras Embedding 레이어가 아닌, 팀 데이터셋에 맞는 Word2Vec 임베딩 층을 사용해 임베딩 층으로 주입한다. 이전의 LSTM 모델에서 임베딩 층만 달라지기 때문에, 해당 부분만 기록한다. # Word2Vec Embedding 모든 데이터셋(커뮤니티, 포털 게시글 및 댓글)을 mecab 형태소 분석기를 사용해 형태소 단위로 분석하고, Word2Vec 임베딩을 진행했다. Gensim라이브러리의 Word2Vec 모델을 사용했고, skip-gram 방식을 적용했다. 최소 등장 빈도는 5, 윈도우 사이즈는 10으로 설정하였으며, 100차원으로 임베딩하였다. 임베딩 품질을 확인하기 위해 다음의 작업을 진행했다. 첫째, 몇 가지 키워드를 선정하여 코사인 유사도가 높은 단어들을 추출했다. 어느 정도 유..